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*Department of Mathematical and Computing Sciences, University of Surrey, Guildford GU2 5XH, United Kingdom; †Department of
Mathematics, Zanjan University, Zanjan, P.O. Box 313, Iran; ‡Department of Mathematics, Heriot–Watt University, Riccarton, Edinburgh EH14

4AS, United Kingdom
E-mail: p.aston@mcs.surrey.ac.uk.

Received December 28, 1995; revised July 3, 1996

case, the degeneracy is dealt with by splitting the vector field
into two parts, one tangent to the group orbit and the otherIn problems with O(2) symmetry, the Jacobian matrix at nontrivial

steady state solutions with Dn symmetry always has a zero eigen- normal to it. A standard bifurcation analysis is then per-
value due to the group orbit of solutions. We consider bifurcations formed on the normal vector field and the results are inter-
which occur when complex eigenvalues also cross the imaginary preted for the whole vector field. He considers the Kura-
axis and develop a numerical method which involves the addition

moto–Sivashinsky equation with O(2) symmetry as anof a new variable, namely the velocity of solutions drifting round
example but does not present any new numerical results.the group orbit, and another equation, which has the form of a

phase condition for isolating one solution on the group orbit. The Landsberg and Knobloch [22] also considered this prob-
bifurcating branch has a particular type of spatio-temporal symme- lem and showed that at a Hopf bifurcation on the steady
try which can be broken in a further bifurcation which gives rise to state solution, so-called direction reversing travelling wave
modulated travelling wave solutions which drift around the group

(DRTW) solutions bifurcate. They transformed the prob-orbit. Multiple Hopf bifurcations are also considered. The methods
lem into canonical coordinates [8] so that one equation,derived are applied to the Kuramoto–Sivashinsky equation and we

give results at two different bifurcations, one of which is a multiple associated with the drift around the group orbit, decouples
Hopf bifurcation. Our results give insight into the numerical results from the others thus separating out the degeneracy. Proc-
of Hyman, Nicolaenko, and Zaleski (Physica D 23, 265, 1986). Q 1997 tor and Weiss [24] and Matthews, Proctor, Rucklidge, and
Academic Press

Weiss [25] have also considered this problem in the context
of nonlinear magnetoconvection. They refer to the bifur-
cating periodic solutions as pulsating waves. They also1. INTRODUCTION
mention that further bifurcation yields MTW solutions.
However, they did not do any analysis of the bifurca-We consider Hopf bifurcations which occur on nontrivial
tions involved.steady state solutions which have Dn symmetry in systems

The methods using canonical coordinates for this prob-with O(2) symmetry. The usual equivariant Hopf theorem
lem have been considered in more detail by Amdjadi [1].[12] cannot be applied in this situation since there is a zero
However, the drawback with these methods is that theyeigenvalue of the Jacobian at every solution due to the
cannot be usefully applied directly to partial differentialgroup orbit of solutions.
equations. Thus, the approach we use in this paper is simi-Aston, Spence, and Wu [6] considered a similar type of
lar to that of Aston, Spence, and Wu [6, 7], namely theproblem but associated with an eigenvalue passing through
addition of a phase condition and an extra variable tozero and showed that a bifurcating branch of travelling
eliminate the degeneracy due to the group orbit. Thewave (TW) solutions occurs which is associated with a drift
Hopf bifurcation under consideration is then a standardaround the group orbit. The approach used was to modify
symmetry-breaking Hopf bifurcation giving rise to timethe system by adding a phase condition to eliminate the
periodic solutions with a particular spatio-temporal sym-degenerate zero eigenvalue so that standard theory could
metry. If this symmetry is broken in a further bifurcation,be applied. They also considered the situation when a Hopf
modulated travelling wave solutions arise. This methodbifurcation occurs on a branch of TW solutions and showed
is then applied to the Kuramoto–Sivashinsky equationthat it gives rise to modulated travelling wave (MTW)
and numerical results are obtained in two different param-solutions [7].

Krupa [21] considers the related but more general prob- eter regimes. This enables some of the numerical results
of Hyman, Nicolaenko, and Zaleski [13] to be interpretedlem of bifurcation from group orbits for problems which

are equivariant with respect to subgroups of O(n). In this in a precise way.
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2. BIFURCATIONS (2.3)ẋ 5 g(x, l) 2 cAx 5 g̃(x, c, l),

Consider the problem where Ax is the tangent vector to the group orbit defined by

u̇ 5 g(u, l), g : X 3 R R X, (2.1)
Ax 5

d
da

(ra x)ua50.
where X is a Hilbert space. We suppose that this problem
has O(2) symmetry so that

By adding a phase condition of the form

g(cu, l) 5 cg(u, l) for all c [ O(2),
ċ 5 p(x, c, l),

where the group O(2) is generated by the rotations ra ,
a [ [0, 2f) and the reflection s. Assuming time periodic the zero eigenvalue due to the rotational symmetry can
boundary conditions, the full symmetry of the problem is be eliminated and so standard theory can then be applied
then O(2) 3 S1, where the additional S1 symmetry is due (see [7]). Since we want solutions with c(t) constant in
to time translations. time, the right-hand side of the phase condition must be

We decompose the space X as X 5 Xs % Xa, where Xs independent of both time t and c. Thus, we choose the
and Xa are the symmetric and antisymmetric spaces with phase condition to be
respect to the reflection s respectively. In problems with
O(2) symmetry, there are typically many branches of sym- ċ 5 p(x, l), (2.4)
metric steady state solutions contained in Xs. However,
due to the continuous spatial symmetry, there are group where x is the time average of x(t) over one period T
orbits of nontrivial steady states (or relative equilibria) defined by
passing through each symmetric steady state. In this case,
the linearisation gu(u, l) evaluated at a nontrivial steady
state has a nontrivial null space for all values of l where x 5

1
T
ET

0
x(t) dt.

the nullvector is the tangent vector to the group orbit [6].
This degeneracy due to the group obit means that standard

The solution of the differential equation (2.4) with periodicbifurcation analysis cannot be used to study bifurcations
boundary conditions is given by c(t) 5 constant, as re-in which either a real eigenvalue passes through zero or a
quired, and so (2.4) becomespair of complex conjugate eigenvalues cross the imagi-

nary axis.
The reason for using canonical coordinates as described p(x, l) 5 0

in [1, 22] is to change variables in order to factor out the
degeneracy due to the group orbit, giving a reduced system which fixes the spatial phase of the solutions on the group
of nondegenerate equations, together with an additional orbit. Thus, we consider the system
equation which decouples from the rest. This method
works well for small systems of ordinary differential equa-
tions but is of no practical use for partial differential equa- ẏ 5 G(y, l) 5 Fg̃(x, c, l)

p(x, l)
G , (2.5)

tions. An alternative way of removing the degeneracy is
to add an additional equation, which fixes one solution
on the group orbit and to include an additional variable, where y 5 (x, c) [ Y 5 X 3 R. One simple choice of the
namely the drift velocity around the group orbit. This phase function p is
method is amenable to an analysis of the bifurcations in-
volved using standard techniques, since the degeneracy has p(x, l) 5 k,, xl, , [ X,
been removed, and also leads to numerical methods for
dealing with such bifurcations.

where k , l defines an inner product on X.We seek solutions of the form
In order to fix the spatial phase the phase function p

must satisfy the nondegeneracy condition(2.2)u(t) 5 rctx(t)

kpx(x0 , l0), Ax0l ? 0, (2.6)which allows for time periodic solutions x(t) with a drift
around the group orbit superimposed on them, with veloc-
ity c. Substituting (2.2) into (2.1) gives or equivalently,
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k,, Ax0l ? 0 (2.7) ways. First, if the Hopf bifurcation is associated with the
one-dimensional irreducible representation R 5 I, S 5 2I,
then the eigenvalues 6ig0 will generically be simple andfor the simple form of the phase function [7].
there will be a single bifurcating branch of time-periodicThe eigenvalues of Gy are simply related to those of gx .
solutions. Since both S and f [ S1 act as 2I on the eigen-The following result is proved in [9].
space, the bifurcating branch will have the spatial-temporal

THEOREM 2.1. Suppose that (x0 , c0 , l0) is a solution of symmetry (S, f) [ Dn 3 S1. Note that (S, f)2 5 (I, 0) and
G((x, c), l) 5 0. If the eigenvalues of g̃x(x0 , c0 , l0) are si , so this is a type of reflection operator. The interpretation
i 5 1, ..., n with sn 5 0, then the eigenvalues of Gy((x0 , c0), of this symmetry is that a shift in time by half a period is
l0) are si , i 5 1, ..., n 2 1 and 6d, where equivalent to acting with S. We note from the definitions

of S and u that if y has (S, f) symmetry, then
d 5 [2 kpx(x0 , l0), Ax0l]1/2.

2c (t 1 Tu/2f) 5 c(t)Clearly, if gx(x0 , c0 , l0) has eigenvalues 6ig0 then so
has Gy((x0 , c0), l0). Also, note that the nondegeneracy

and since c must be a constant, this implies that c 5 0.condition (2.6) is precisely d ? 0.
Thus, these solutions do not drift around the group orbitFor the simple choice of phase function, the additional
and therefore correspond to time-periodic solutions ofeigenvalues of Gy((x0 , c0), l0) are 6d, where d 5 [2 k,,
(2.1). However, they do break out of the symmetric spaceAx0l]1/2. Thus, if k,, Ax0l is positive, then 6d will be on
associated with S and so the solutions oscillate either sidethe imaginary axis. Numerically, this will cause confusion
of the reflection invariant space. Thus, we refer to thesewith the eigenvalues which cross the imaginary axis at the
solutions as oscillating waves.Hopf bifurcation point. Thus it is important to choose ,

The second way in which such solutions arise is dueso that k,, Ax0l is negative to ensure that the additional
to a Hopf bifurcation associated with a two-dimensionaleigenvalues lie on the real axis. Detection of this type of
irreducible representation. In this case, there are threebifurcation can be achieved by using AUTO [11] on the
bifurcating branches of time-periodic solutions, each withsystem G(y, l) 5 0. We note that on a steady state solution,
different symmetries [12]. By considering the effect of thex is independent of time. Thus x 5 x and the phase condi-
symmetries for each branch on the velocity component c,tion reduces to k,, xl 5 0 which is a simple algebraic equa-
we show (see Section 3) that c 5 0 on two of the branchestion that is easily implemented.
while c ? 0 on the third. Thus, two of the bifurcatingThe reason for introducing the phase condition is to
branches consist of time-periodic solutions of which oneeliminate the continuous spatial symmetry. However, it is
is contained in the reflection invariant space while theimportant that other symmetries are retained. It is easily
other is a branch of oscillating waves. The third branchverified that if the phase function p satisfies
with c ? 0 corresponds to modulated travelling waves. This
is consistent with the results of Krupa [21] who consideredp(sx, l) 5 2p(x, l),

(2.8) this problem in a different way.
p(r2f/nx, l) 5 p(x, l), n [ Z1, Numerically, once a Hopf bifurcation point has been

detected, a starting solution on the branch of periodic
then G(y, l) is equivariant with respect to the reflection solutions can be obtained for the variable x using the infor-
S, the discrete rotation R2f/n , and the time translation u [ mation contained in the eigenfunctions. We note, however,
S1 which act on y 5 (x, c) by that the eigenfunctions of the linearisation of G(y, l) 5 0

which includes the simple phase condition k,, xl 5 0 are
not appropriate for constructing the initial solution. This

S Fx

c
G5 F sx

2c
G , R2f/n Fx

c
G5 Fr2f/nx

c
G , is due to the fact that the linear operator Gy((x0, 0), l0)

involves the time averaging term. We now address this
issue.

uFx(t)

c(t)
G5 Fx(t 1 Tu/2f)

c(t 1 Tu/2f)
G . If x0 [ Xs, then we denote the restriction of g̃x(x0, 0, l0)

to Xs and Xa by g̃s
x(x0, 0, l0) and g̃a

x(x0, 0, l0), respectively
[30]. Then

Thus, the symmetry of G is Dn 3 S1 for an appropriate
choice of p, where Dn is the dihedral group generated by
the rotations R2f/n and the reflection S. The theory related
to Hopf bifurcations in this case is well developed [12]. Of Gy((x0, 0), l0) 5 1

g̃s
x 0 0

0 g̃a
x 2Ax0

0 k,a,2. l 0
2 ,

particular interest are Hopf bifurcations which break the
reflectional symmetry S. These can occur in two different
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where Ax0 [ Xa and , 5 ,a [ Xa to ensure that G has bifurcating branch. Thus (2.10) is now a homogeneous
equation with solution Fa(t) 5 Fa(t) 1 bAx0 . Now Fa 5the symmetry S. Note that the reflectional symmetry S can

also be used to decompose Y 5 Ys % Ya. Hence, the bAx0 , since the time-dependent part of Fa(t) involves sin
got and cosg0t, both of which have zero mean. From k,a,linearization of (2.5) with respect to y evaluated at a steady

state solution has the form Fal 5 k1 5 0 we have that b k,a, Ax0l 5 0. Hence, the
nondegeneracy condition (2.7) implies that b 5 0. There-
fore, Fa 5 Fa as claimed.Ḟ 5 Gy(y0, l0)F, (2.9)

In the symmetry-breaking case, the solution on the bifur-where F 5 [Fs, Fa, Fc] [ Xs 3 Xa 3 R and y0 5 (x0 , 0).
cating branch is given by

THEOREM 2.2. (i) If gs
x has eigenalues 6ig0 then the

solution of (2.9) is F(t) 5 [Fs(t), 0, 0] [ Ys, where Ḟs 5
x(t) 5 xs 1 aFx(t) 1 O(a2),gs

x(x0 , l0)Fs .
c 5 0, (2.11)(ii) If ga

x has eigenvalues 6ig0 then the solution of (2.9)
is F(t) 5 [0, Fa(t), 0] [ Ya, where Fa(t) satisfies Ḟa 5 l 5 l0 1 O(a2),
ga

x(x0 , l0)Fa and is constructed using the eigenfunctions
associated with the eigenvalues 6ig0 .

where Fx(t) 5 [0, Fa(t)]. An initial approximation to the
Proof. (i) This is a standard result since gs

x(x0, l0) has solution is obtained by truncating the higher order terms
only got the eigenvalues 6ig0 on the imaginary axis and and choosing a small value for a.
k,a, Fsl 5 0, which we include for later reference. To compute the periodic solutions we use the spatial

(ii) Expanding (2.9), we obtain phase condition k,a, xl 5 0, together with a standard tempo-
ral phase condition which is built into AUTO. The system
is then solved for x and the scalar variables c and T. TheḞs 5 gs

x(x0, l0)Fs,
possible further bifurcation occurs in this system with no

Ḟa 5 ga
x(x0, l0)Fa 2 FcAx0 , modifications and so the standard AUTO procedure can

be used for detection and swapping branches.Ḟc 5 k,a, Fal.

The first equation implies that Fs 5 0, since gs
x has no 3. THE KURAMOTO–SIVASHINSKY EQUATION

eigenvalues on the imaginary axis. Since Fa is independent
The Kuramoto–Sivashinsky (KS) equation describesof time, then k,a, Fal 5 k1 , where k1 is constant. Thus

many physical phenomena including reaction–diffusionḞc 5 k1 , giving Fc 5 k1t 1 k2 for some constant k2 . The
problems (Kuramoto [18, 19]), flame fronts in combustionperiodic boundary conditions imply that k1 5 0, since k1t
problems (Sivashinsky [27, 28]), the dynamics of viscous-is only time periodic if k1 5 0, and so Fc 5 k2 . Therefore,
fluid films flowing along walls (Sivashinsky and Michelsonthe second equation is now
[29], Shlang and Sivashinsky [26]), cross-roll and zigzag
instabilities in convective patterns (Kuramoto [20]), as wellḞa 5 ga

x(x0, l0)Fa 2 k2Ax0 . (2.10)
as several other physical phenomena (see [17]). Much ef-
fort has gone into the study of the KS equation. In particu-It is easily verified that ga

x(x0, l0)Ax0 5 0 and so the solution
lar, many numerical results have been obtained by Hyman,of the homogeneous equation Ḟa 5 ga

x(x0, l0)Fa is
Nicolaenko, and Zaleski [13] and our results give insightFa(t) 5 Fa(t) 1 bAx0 for any b [ R and where Fa(t)
into some of their computations.was defined in the statement of the theorem. To find the

The equation we consider is given byparticular solution of the above system we assume that
Fa(t) 5 v is a solution, where v is a constant function. Then

Ut 1 4Uxxxx 1 l(Uxx 1 As U2
x) 5 0,

(3.1)ga
x(x0, l0)v 2 k2Ax0 5 0.

U(0, t) 5 U(2f, t),

If c0 is the left eigenvector of ga
x(x0, l0) corresponding to

the zero eigenvalue, then where the spatial variable has been rescaled so that we
can consider 2f-periodic solutions. The parameter l is then

2k2 kc0 , Ax0l 5 0. related to the true period L.
We first transform this equation into a more convenient

form, following [13]. The mean value of the solution toThis implies that k2 5 0, since generically kc0 , Ax0l ? 0
and so Fc(t) 5 0, as anticipated, since c 5 0 on the whole Eq. (3.1) is m(t) 5 (1/2f) e2f

0 U(x, t) dx and so
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(3.6)yt 5 G(y, l),dm
dt

5
1

2f
E2f

0
Ut(x, t) dx.

where y 5 (v, c) [ Y 5 X 3 R and define
Integrating (3.1) on the interval [0, 2f] implies that

S Sv

c
D5 S sv

2c
D, R Sv

c
D5 Sr2f/n v

c
D .dm

dt
5 2

l

4f
E2f

0
U2

x dx.

To normalise the drift to zero we define Then G(y, l) is equivariant with respect to the dihedral
group Dn generated by R and S if r2f/n, 5 , and s, 5 2,

u(x, t) 5 U(x, t) 2 m(t), (see (2.8)). We refer to solutions of (3.4) which satisfy
sv 5 v as symmetric solutions. Clearly any solution of

where u has zero mean. Therefore we obtain the equation G(y, l) 5 0 which satisfies Sy 5 y must have c 5 0 and
thus involves a symmetric steady state solution of (3.4). If
the solution also satisfies Ry 5 y then the steady stateut 1 4uxxxx 1 lSuxx 1

1
2

u2
xD2

l

4f
E2f

0
u2

x dx 5 0. (3.2)
solution has Dn symmetry.

We now consider the possibility of time periodic
branches of solutions bifurcating from a branch of nontriv-To eliminate the integral term and to avoid further numeri-
ial steady state solutions. We assume that along a primarycal difficulties which we describe in the Appendix, we de-
branch of solutions of (3.6), there is a point (y0, l0), wherefine v 5 ux and differentiate (3.2) with respect to x to give
y0 5 (v0 , 0), such that Gy(y0 , l0) has eigenvalues 6ig0 .
This primary branch lies in the fixed point space YDn 3 R2vt 5 g(v, l) :5 4vxxxx 1 l(vxx 1 vvx)5 0,

(3.3) for some n.
g : H 4

0(0, 2f) R H 0
0(0, 2f), Now the linearisation Gy(y0, l0) decomposes into diago-

nal blocks on the isotypic components of the space Y,
where H m

0 (0, 2f) is the space of 2f-periodic functions with which are associated with the irreducible representations
zero mean whose derivatives up to and including the mth of Dn [5]. The nontrivial irreducible representations of Dn
are square integrable. For ease of notation, we define are given by
X 5 H4

0(0, 2f). It is easily verified that this equation is
equivariant with respect to the action of O(2) defined by (i) R 5 I, S 5 2I,

(ii) R 5 2I, S 5 I (n even),
rav(x, t) 5 v(x 1 a, t),

(iii) R 5 2I, S 5 2I (n even),
sv(x, t) 5 2v(2x, t).

(iv) R 5 1 cos (2fm/n) sin (2fm/n)
2sin (2fm/n) cos (2fm/n)2 ,It is well known that steady state bifurcations from the

trivial solution occur at l 5 4n2, n [ Z1, resulting in
branches of solutions contained in XDn 3 R, where XDn is

S 5 S1 0

0 21
D ,

m 5 1, ..., As n 2 1 (n even)
5 1, ..., As (n 2 1) (n odd).the fixed point space associated with the dihedral group

Dn , generated by s and r2f/n . We refer to the nth such
branch as primary branch n. There is also the trivial irreducible representation

Substituting v 5 ra(t)ṽ into (3.3) and dropping the R 5 I, S 5 I. All of these representations are absolutely
tildes gives irreducible and the corresponding isotypic components of

Y are
(3.4)vt 1 4vxxxx 1 l(vxx 1 vvx) 1 c(t)Av 5 0,

where c(t) 5 ȧ(t) and the linear operator A is given by
Y0 5 SOy

k51
ak sin nkx, 0D5 YDn,

Av 5 vx . We include the phase condition

(3.5)ċ(t) 5 k,, vl, Y1 5 SOy
k50

ak cos nkx, cD,

where v is the time average of v over one period. The
periodic boundary conditions then imply that ċ(t) 5 0 (see Y2 5 SOy

k50
ak sin Snk 1

n
2D x, 0D (n even)

Section 2). We write (3.4) and (3.5) as
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TABLE I

Y3 5 SOy
k50

ak cos Snk 1
n
2D x, 0D (n even) Subgroups Giving Two-Dimensional Fixed Point Spaces for

Hopf Bifurcation with Dn 3 S1 Symmetry for Odd n

Case Isotropy subgroup Fixed point spaceY4m 5SOy
k50

[ak sin(nk1m)x1bk sin(n(k11)2m)x], 0D
(i) Z2(S) 5 h(I, 0), (S, 0)j h(z̃1 , z̃1)j
(ii) Z2(S, f) 5 h(I, 0), (S, f)j h(z̃1, 2z̃1)j

%SOy
k50

[ck cos(nk1m)x1dk cos(n(k11)2m)x],cD , (iii) Z̃n 5 h(R, 22f/n)j h(z̃1 , 0)j

m 5 51, ..., As n 2 1 (n even)

1, ..., As (n 2 1) (n odd). break the reflectional symmetry will give rise to MTW
solutions of (3.1).

In the case of the two-dimensional irreducible represen-Thus Y 5 Y0 % Y1 % Y2 % Y3 % Y4m (see [5]).
tations there are two eigenfunctions f1(x) 5 f1r(x) 6Linearising (3.6) about (y0 , l0) on the primary branch
if1 j (x) and f2(x) 5 f2r 6 if2 j(x), with f1r(x), f1j(x), f2r(x),gives
f2 j(x) [ Y4m , corresponding to the double eigenvalues 6i.
Also f1(x) [ Ys and f2(x) [ Y a and so their structure is(3.7)Ḟ 5 Gy(y0 , l0)F.
given in Theorem 2.2. The corresponding real eigenspace
is Ei 5 sphf1r(x), f1j(x), f2r(x), f2j (x)j which is four-dimen-

Note that Gy(y0 , l0) is not independent of time due to the
sional. We identify the eigenspace Ei with C2 by

phase condition. If Gy(y0 , l0) has eigenvalues 6ig0 then
Eq. (3.7) has a solution of the form F(x, t) 5 [F1(x, t),

(x1 , y1 , x2 , y2) } x1f1r(x) 1 x2f1 j(x) 1 y1f2r(x) 1 y2f2j (x),0]T, where F1(x, t) 5 eig0tf1(x) is the solution of the lineari-
sation of (3.4) associated with the imaginary eigenvalues (3.8)
(see Theorem 2.2). We assume that time is rescaled so that
the imaginary eigenvalues become 6i.

where zj 5 xj 1 iyj , j 5 1, 2, and (z1 , z2) [ C2. We thenNow suppose that the eigenfunctions f1(x) 5 f1r(x) 6
introduce the new coordinates (z̃1 , z̃2) 5 (z1 2 iz2 , z1 2if1 j(x) satisfy f1r(x), f1j(x) [ Y1 . Thus the corresponding
iz2), so that in these coordinates u acts diagonally on C2

real eigenspace is Ei 5 sphf1r , f1 jj , Y1 and is two dimen-
[12]. The representation T̃ of Dn 3 S1 in these new coordi-sional. Now f [ S1 acts as 2I on Ei and since Ei , Y1 we
nates is given byalso have that Sf1 5 2f1 , Rf1 5 f1 . Hence, (S, f) 5

S1 [ Dn 3 S1 fixes f1 [ Ei . The action R1 5 (R, 0), where
Rn

1 5 (I, 0) [ Dn 3 S1, also fixes f1 . Note that S2
1 5

T̃(S) 5 S0 1

1 0
D,(I, 0) and S1R1 5 R21

1 S1 . Hence, the isotropy group S1

generated by S1 and R1 is the symmetry group of the eigen-
space Ei and is isomorphic to Dn . Since dim(Y S1 > Ei) 5

T̃(R) 5 Se2fim/n 0

0 e22fim/nD,2, by the equivariant Hopf theorem there exists a branch of
periodic solutions bifurcating from the steady state branch
having S1 as its group of symmetries.

T̃(u) 5 Seiu 0

0 eiu
D.Similarly, if f1r , f1 j [ Y2 then Ei , Y2 and is two-

dimensional. The symmetry group S2 of Ei is then gener-
ated by S2 5 (S, 0) and R2 5 (R, f) which is again isomor-

Golubitsky, Stewart, and Schaeffer [12, Chap. XVIII] havephic to Dn . Hence the equivariant Hopf theorem implies
shown that there are three isotropy subgroups of Dn 3 S1

a branch of solutions with symmetry S2 , Dn 3 S1.
acting on C2 which give two-dimensional fixed point spacesFinally, if f1r , f1 j [ Y3 then Ei , Y3 and is two-dimen-
and these are given in Table I for odd n. Our example insional. The symmetry group S3 of Ei is then generated by
the next section involves D3 and so these are the appro-S3 5 (S, f) and R3 5 (R, f) and is again isomorphic to
priate spaces in this case.Dn . Hence the equivariant Hopf theorem implies a branch

In case (i), z̃1 5 z̃2 and reverting to the original coordi-of solutions with symmetry S3 , Dn 3 S1.
nates, this implies that y1 5 y2 5 0. The identification (3.8)In all of these one-dimensional cases, the Si , i 5 1, 2, 3,
then implies thatsymmetry implies that c 5 0 so that the bifurcating branch

of periodic solutions of (3.6) corresponds to periodic solu-
tions of (3.1). However, any further bifurcations which (x1 , 0, x2 , 0) } x1f1r 1 x2f1 j .
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Therefore the subgroup S1 5 Z2(S), reduces the four- In practice, we use k,, vNl 5 0 as the phase condition
for a suitable choice of ,. On steady state solutions vN isdimensional space to a two-dimensional one and
independent of time. Thus vN 5 vN and the phase condition
reduces to the simple algebraic equation k,, vNl 5 0. OnYS1 > Ei 5 sphf1r , f1 jj. (3.9)
periodic solution branches, we implement it in AUTO as
an integral constraint given bySimilarly, subgroups (ii) and (iii), respectively, imply that

YS2 > Ei 5 sphf2r , f2 jj, (3.10)
k,, vl 5

1
T
ET

0
kl, vl dt 5 0.

YS3 > Ei 5 sphf1r 2 f2 j , f1 j 1 f2rj, (3.11)

The standard temporal phase condition used by AUTO iswhere S2 5 Z2(S, f) and S3 5 Z̃n . Hence, generically there
also included and the Eqs. (4.1), together with the twoare three branches of periodic solutions bifurcating from
phase conditions are then solved for the time dependentthe primary branch. The solutions associated with the isot-
functions a1 , a2 , ..., aN , b1 , b2 , ..., bN and the scalar variablesropy subgroup Z2(S) are contained in the symmetric sub-
c and T, which are both considered to be parameters.space and have c 5 0 while those associated with the

subgroup Z2(S, f) are oscillating wave solutions, again with
c 5 0. However, solutions associated with the subgroup

4.1. A Simple Hopf BifurcationZ̃n do not have c 5 0 and so the solutions are modulated
travelling waves of the original Eq. (3.3). Therefore only We now consider a bifurcation for which Hyman, Nico-
two of the bifurcating branches give rise to periodic solu- laenko, and Zaleski [13] obtained approximate numerical
tions. These results agree with Krupa [21], where he has results by simply solving the initial value problem and
shown that generically there are three branches bifurcating describing the stable solutions which were found. In partic-
from the steady state, where two consist of periodic orbits ular, they found a branch of stable steady state solutions
and the third consists of two-tori. which they referred to as strange fixed points (see Fig. 11

The preceding analysis applies when m and n are co- of [13]). These solutions have a reflectional symmetry and
prime. If m and n are not coprime, i.e., m 5 m̃l, n 5 ñl, are 2f-periodic. Thus they have D1 symmetry. Investiga-
then (r2f/n)ñ 5 I and r2f/n and s generate the group Dñ , tion of the steady state solutions shows that this is a branch
where ñ 5 n/l. Clearly (r2f/n)ñ acts trivially on Ei and the of solutions which bifurcates from primary branch 2 at
group generated by this element is Zl , since ñl 5 n. Thus, l 5 52.89.
Ei , YZl and, restricting to this fixed-point space, the group The results of Hyman, Nicolaenko, and Zaleski [13] sug-
action is effectively that of Dñ and it is results for this gest that there are two bifurcations which occur. The first
group which must be considered. Such a bifurcation is gives oscillating (periodic) solutions while the further bifur-
essentially a rescaled version of a bifurcation occurring on cation gives rise to what they call travelling beating waves
a Dñ branch [4]. which are similar except that they slowly drift. These solu-

tions are shown in Fig. 12 and Fig. 13 of [13]. These results
suggest that there may be a branch of oscillating waves

4. NUMERICAL RESULTS (Fig. 12) and a branch of modulated travelling waves (Fig.
13). Hence, we applied our method to this problem taking

To obtain a numerical solution of the Kuramoto–
, 5 2 cos x and N 5 20. A Hopf bifurcation which breaks

Sivashinsky equation, we use the spectral Galerkin method the reflectional symmetry was found on the steady state
and thus we approximate v(x, t) by branch at l 5 83.7241. This gives rise to a branch of oscillat-

ing waves with (S, f) symmetry. Following this branch, a
secondary bifurcation was found at l 5 85.672. These re-vN(x, t) 5 ON

k51
(ak(t) sin kx 1 bk(t) cos kx).

sults are in good agreement with those of Hyman, Nico-
laenko, and Zaleski [13], who found ‘‘some kind of Hopf

Note that there is no constant term as we assume that bifurcation’’ at l 5 83.75 and a further bifurcation at l 5
v has zero mean. Substituting this solution into (3.4) 86. The branch of modulated travelling waves is stable up
gives equations of the form to a turning point at l 5 90.81 and then loses stability at

this point. Hyman, Nicolaenko, and Zaleski [13] found a
(4.1)ż 5 f(z, c, l), transition to chaotic behavior at l 5 89 which is quite near

to this turning point. These solutions are shown in Fig. 1.
Thus, we are able to give a precise description of thewhere z 5 [a1 , a2 , ..aN , b1 , b2 , ..., bN]T. We consider c as

a parameter. transitions observed in [13] in this region.
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FIG. 1. Branches associated with the simple Hopf bifurcation: steady state solutions, ———; time periodic solutions, – – –; modulated travelling
wave solutions, – - – - –; d, bifurcation to oscillating waves; j, bifurcation to modulated travelling waves.

The branch with D1 symmetry is stable up to the bifurca- All three bifurcating branches were computed numeri-
cally using , 5 2cos 3x and N 5 20 and are shown, togethertion at l 5 83.72. Following the branch backwards in l, a

bifurcation to travelling waves is found at l 5 70.03, at with primary branch 3 in Fig. 2. As all the branches are
supercritical, precisely one of them will be stable (see [12]).which point the branch again loses stability. In this case

the travelling wave branch is also unstable and so locally We show in the next section that the bifurcating branch 3
consisting of modulated travelling wave solutions is thethere are no stable solutions. This point was estimated by

Hyman, Nicolaenko, and Zaleski [13] as l 5 72 and their stable branch. Note, however, that this branch soon loses
stability at a turning point at l 5 67.323.results indicate that the solutions are chaotic for smaller

values of l. Hyman, Nicolaenko, and Zaleski [13] conjectured the
existence of a bifurcation on the primary branch at l 5
67.5 but associated it with a perturbed Shilnikov homo-

4.2. A Multiple Hopf Bifurcation
clinic loop. However, our results show that the bifurcation
on primary branch 3 occurs earlier at l 5 66.751. TheThere is a Hopf bifurcation on primary branch 3 at l 5

66.751 at which there are four eigenvalues on the imaginary stable bifurcating branch of modulated travelling waves
then loses stability quite quickly at a turning point at l 5axis with g 5 414.066 and so this is clearly associated with

the (only) two-dimensional irreducible representation of 67.323 and this is clearly the transition observed by Hyman,
Nicolaenko, and Zaleski. Numerical results were obtainedD3 . The numerical studies of Hyman, Nicolaenko, and

Zaleski [13] indicate a bifurcation at l 5 67.5, but they at l 5 67.5 in [13] which is just past the turning point.
They considered the energy in different modes and in thismentioned that this point is not of Hopf type nor a classical

homoclinic loop. Our numerical results give a clearer un- norm, the quasiperiodic solutions on the bifurcating branch
appear to be periodic. The period of the solution v at thederstanding of the solutions in this region.

Having detected the Hopf bifurcation, starting solutions turning point is T 5 0.017 which is small due to the large
value of g at the multiple Hopf bifurcation point. Thus,for each of the three bifurcating branches of periodic solu-

tions can be constructed using the eigenvectors in each of in Figs. 4–7 of [13], the regions of very fast oscillations are
where the trajectory approaches the region in which thethe two-dimensional fixed point spaces, as described in the

previous section. More details can be found in [1]. quasiperiodic solutions existed before the turning point.
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FIG. 2. Branches associated with the multiple Hopf bifurcation; branches 1 and 2 are time periodic solutions and branch 3 consists of modulated
travelling wave solutions.

The solutions shown stay in this region for quite a large 4.3. Determination of Stability at the Multiple Hopf
Bifurcation Pointnumber of oscillations and then move away in a bursting

type of behavior, before returning again in due course. The
initial motion away from the shadow of the quasiperiodic A necessary condition for the existence of a stable bifur-

cating branch of solutions arising from the multiple Hopfsolutions will be in a direction similar to the one-dimen-
sional unstable manifold of the quasiperiodic solutions be- bifurcation is that all three branches are supercritical [12].

Clearly from Fig. 2, this is the case here. In this situation,yond the turning point. Note that in these regions of fast
oscillation, modes 3 and 6 have quite large energies while precisely one of the bifurcating branches is stable but there

are conditions on cubic and quintic terms in the normalthe energy in mode 1 is quite low. The reason for this is
that the Hopf bifurcation occurs from primary branch 3 form equations to determine which is the stable branch.

Thus, the computation of the branches is not sufficient toon which the Fourier coefficients associated with modes 3
and 6 are nonzero, while those associated with mode 1 are determine which is stable.

We consider the stability of the bifurcating branches inzero. As the turning point on the branch of quasiperiodic
solutions is quite close to the Hopf bifurcation point, then two ways. The first is an ad hoc method for estimating the

important coefficients in the bifurcation equations whilethe energy in mode 1 has not had long to grow and is
therefore still small. We note that the energy levels of the second is a computational method for the accurate

determination of these coefficients. Both methods give thethe rapid oscillations are in agreement with our computed
results for the quasiperiodic solutions at the turning point. same results, namely that the bifurcating branch of modu-

lated travelling waves is the stable branch.We also note that these rapid oscillations are not associated
with a spiral hyperbolic point as assumed in [13] but with On primary branch 3, the Fourier coefficient a1 is zero

but on the bifurcating branches 1 and 3, a1 is nonzero. Wethe bifurcated quasiperiodic solutions.
Finally, part of the transient dynamics was considered therefore assume that the branching equation associated

with branch 1 has the form c1ea 1 c2a3 5 0 and for branchat l 5 68 in [13] and a structure very close to a torus was
found. This is clearly the shadow of the pair of two-tori 3 is given by c1ea 1 c3a3 5 0, where a 5 ia1(t)iy , e 5

l 2 l0 , and l0 5 66.751 is the value of l at the bifurcationwhich collided at the turning point.
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point. Comparing these equations and the branching equa- problem given by F(u, l, g) ; 2gut 1 f(u, l) 5 0, F :
U 3 R2 R V, one possible representation, that has beentions in [12] gives
used in our computations, is given by

• c1 5 Re(Ae(0)) , 0,

• c2 5 Re(2AN(0) 1 B(0)), F(u0 1 v, l0 1 l, g0 1 g) 1 Mg 5 F(u0 , l0 , g0)
(4.2)• c3 5 Re(AN(0) 1 B(0)), Lv 5 x,

where Ae(0), AN(0), and B(0) are coefficients in the full,
where hL, Mj are suitable reduction operators with L [four-dimensional bifurcation equations. Our fom of the
L(U, Rm) and M [ L(Rm, V). The operators hL, Mj arebranching equations implies that on branch 1, e 5 2(c2/
chosen in such a way that the mapping defined by (4.2) isc1)a2 :5 a1a2 and on branch 3, e 5 2(c3/c1)a2 :5 a2a2. We
regular in a neighborhood of (u0 , l0 , g0), even if this pointestimate the coefficients a1 and a2 by assuming that there
is a singular point of the mapping F with dim Ker Fu(u0 ,is a linear relationship between e and a2 near to the bifurca-
l0 , g0) 5 m . 0. As the mapping is regular, there existtion point. By taking the bifurcation point (l 5 66.751,
(locally) smooth mappings g : Rm 3 R2 R Rm and v :a2 5 0) and one nearby point on the branches we can
Rm 3 R2 R U that solve the system (4.2). Differentiationestimate the slope of this line, thus giving values of a1 and
of the system (4.2) gives us equations for higher ordera2 . For branch 1 we have the extra point
derivatives of g and v. This procedure is well-defined as a
consequence of the implicit function theorem. In the theoryl 5 67.8226, a2 5 0.65936,
of the reduction it can be shown that the reduced bifurca-
tion equation corresponds to g(x, l, g) 5 0 in a neighbor-giving a1 5 1.6248. On branch 3 we have the extra point
hood of the origin (0, 0) and the degeneracy condition is
transformed as gx(0, 0, 0) 5 0. When a symmetry is presentl 5 67.2578, a2 5 1.1309,
an equivariant reduced bifurcation equation is to be con-
structed and this imposes restrictions on the choice of hL,giving a2 5 0.44793. Now Re(B(0)) 5 2c3 2 c2 5
Mj, namely2c1(2a2 2 a1) and so Re(B(0)) , 0. Since all the branches

are supercritical, then Re(AN(0) 1 B(0)) . 0. These are
LTU

c 5 T̃ (i)
c L, TV

c M 5 MT̃ (i)
c , (4.3)sufficient conditions for branch 3 to be the stable bifurcat-

ing branch. This method is not rigorous, since we have not
where TU

c , TV
c , T (i)

c are representations of the symmetryderived the true bifurcation equations but it does give
group on U, V, and Rm, respectively. An obvious choicefurther backing to the assumption that branch 3 is the
consists of projections onto the irreducible representationsstable bifurcating branch.
of the group.A more formal approach to the determination of stabil-

For the Kuramoto–Sivashinsky equation, we defineity consists of accurately computing the coefficients of the
(after rescaling time)normal form on the center manifold. After studying the

stability of this reduced system it can be shown in many
cases of practical interest that the bifurcation diagram and F(v, l, g) :5 gvt 1 4vxxxx 1 l(vxx 1 vvx)
the stability of the bifurcating limit cycles are the same as
for the normal form on the center manifold (see [12]). and we analyze the Hopf bifurcation as a singular point

We compute coefficients of the Taylor expansion using of F on the space of periodic functions, thus taking U 5
a numerical version of the Liapunov–Schmidt reduction. C1

2f(S1, H2
2f) and V 5 C0

2f(S1, H2
2f). We define the operators

As the defining conditions used for accurate computation hL, Mj on the spaces of periodic functions U and V by
of Hopf bifurcation points are based on this reduction,
computation of the higher order terms requires only small

Lu 5
1

2f
E2f

0
Lu(s,.)eis ds, Mz 5 zeisM 1 ze2isM,additional computational effort. The numerical reduction,

in contrast to the classical Liapunov–Schmidt reduction,
does not require exact knowledge of the center eigenspace and the operators hL, Mj are represented in the Fourier
(critical eigenvectors) and therefore it turns out to be nu- basis of H2

2f by
merically stable. We do not give all the details here but
refer to [14, 15] for a more rigorous analysis of the equivari-

L1
kv 5

1
2f

E2f

0
v(x)fs

k(x) dx, M1
kz1 5 Rez1f

s
k(x),ant reduction technique and applications to Hopf bifur-

cation.
The main object of the reduction is a so-called extended L2

kv 5
1

2f
E2f

0
v(x)fc

k(x) dx, M2
kz2 5 Rez2f

c
k(x),

(bordered) system (see also [3, 6, 10, 16]). For a general
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TABLE IIwhere fs
k(x) and fc

k(x) belong to the symmetric and anti-
symmetric components of Y4m (see Section 3); i.e., fs

k corre- Computed Coefficients of the Bifurcation Equations
spond to sin and fc

k to cos functions in the basis of Y4m .
hx 0.23800 3 10204 1 i 0.56520 3 1025It is easy to check that the operations hL, Mj satisfy the
hxx 0.0conditions (4.3) for the action of the symmetry group
hxl Al 20.41082 3 102 1 i 0.53291 3 101

O(2) 3 S1. The presence of an extra zero eigenvalue, due
hxxx 2AN 1 B 0.16320 3 107 2 i 0.10748 3 107

to the O(2) symmetry, means that the formulae for the
hy 20.19985 3 1026 2 i 0.14028 3 1025

computation of higher order derivatives of the reduced
hyy 0.0

mapping h from [15] cannot be applied directly. The in- hyl Al 20.41082 3 102 1 i 0.53291 3 101

verse of the operator fu(u0 , l0) (the linearization of the hyyy AN 1 B 0.44621 3 104 1 i 0.12941 3 105

spatial part of the mapping F at a point on a primary
branch of steady states) does not exist and it has to be
replaced by a generalized inverse. The generalized inverse
is defined by another extended system given by

5. CONCLUSIONS

A numerical method for dealing with Hopf bifurcations
from steady state solutions which have Dn symmetry inSfu m

l 0
D ,

problems with O(2) symmetry has been described. The
method has been applied to the Kuramoto–Sivashinsky
equation in two different parameter regimes of interest.

where the operators l and m are chosen in such a way
The numerical results obtained in both cases give a clear

that the bordered operator is regular. We note that the
picture of the solution structure in these regions which had

extended system used in Section 2 gives an explicit con-
previously been explored using numerical simulation by

struction of such a ‘‘regularization.’’ Another way of elimi-
Hyman, Nicolaenko, and Zaleski [13]. We note that in the

nating the degeneracy due to the group orbit is to restrict
first case of the simple Hopf bifurcation, the existence of

to the symmetric subspace Ys, since the tangent vector to
a secondary bifurcation on the branch of oscillating waves

the group orbit is antisymmetric. The reduction to the
near to the bifurcation from the steady state branch indi-

symmetric space enables us to use the algorithm for detec-
cates that, if a second parameter were varied, then there

tion and accurate computation of Hopf points and bifurca-
is likely to be a steady state/Hopf mode interaction nearby.

tion points as in the nondegenerate case (see [15], Appen-
This has been shown to be the case by Amdjadi and Aston

dix) but the stability analysis must be performed in the
[2] who considered numerical methods for dealing with

whole space.
such mode interactions.

We shall focus on the stability analysis of solutions bifur-
In the case of the multiple Hopf bifurcation, the stability

cating from the Hopf point at l 5 66.751. The local analysis
of the bifurcating branches was determined by using an

requires information on the whole space Y4m , Y 5 span
ad hoc method, based on the computed branches, and a

[sin kx, cos kx] and the Taylor expansion of the reduced
more exact method, based on computing coefficients in

mapping h : R2 3 R2 R C2. The condition hx 5 0 corre-
the normal form. Since both methods gave the same results,

sponds to the presence of eigenvalues 6ig0 in the spectrum
this indicates that the ad hoc method may be useful in

of fu(u0 , l0) and so it may serve as a test function that
other situations where it is not possible to compute the

detects the Hopf point and symmetry breaking to a given
normal form coefficients.

isotypic component (depending on the choice of
L(i)

k , M(i)
k ). The possible types of symmetry breaking were

described in Section 3. The computed values are summa- APPENDIX
rized in Table II, where we denote the coordinates on the

We have transformed Eq. (3.1) to the form (3.3) duespace R2 by x and y; i.e., L1
kv 5 x and L2

kv 5 y. From these
to numerical difficulties experienced with (3.1). We nowresults, it is easy now to find B(0) 5 21.6230 3 106 1
attempt to explain the reasons for these problems.i0.0366 3 106. Thus, we have Re(AN(0) 1 B(0)) . 0,

If we substitute U(x, t) 5 ra(t)u(x, t) into (3.1), we obtainRe(2AN(0) 1 B(0)) . 0, Re(Al(0)) , 0, and Re(B(0)) ,
0 and, comparing with the local analysis in [12, p. 382,
Theorem 3.1], we conclude that the Z̃3 symmetric branch of ut 1 4uxxxx 1 l(uxx 1 As u2

x) 1 cux 5 0,
modulated travelling waves is the stable bifurcating branch.
This is in agreement with the first ad hoc method and is
consistent with the numerical results of Hyman, Nico- where c(t) 5 ȧ(t). There is not a unique solution for this

equation, since if (u, c, l) is a solution then (u 1 b, c, l)laenko, and Zaleski [13].
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